Pour les tirs de compression isentropique comme pour certains tirs radiatifs, il est
nécessaire de dimensionner les échantillons visars. Ceux-ci sont en cuivre, étant
donné que ce matériau est bien connu. De plus, le cuivre utilisé provient du même
lot que le cuivre utilisé par les lanceurs des SNL
, donc ses propriétés sont
supposées être bien connues. Il reste alors à fixer les épaisseurs des échantillons,
de façon à éviter qu'il ne se forme un choc (donc il faut un échantillon suffisamment
fin) et de façon à éviter que les ondes n'aient le temps de faire un aller/retour
dans le matériau (donc il faut un échantillon suffisamment épais). Les épaisseurs
sont choisies sur la foi de simulation MHD
2D
(voir
section 4.2.3 page ).
Enfin, la structure tridimensionnelle de la couronne de plasma n'est pas traitée,
donc le nombre de fils est fixé sur des considérations expérimentales : sur
Z
, la distance entre deux fils doit être inférieure à
pour une
bonne uniformité de la coquille (point du vue du rayonnement).
Les simulations numériques réalisées servent à caler les diagnostics ayant une
fenêtre temporelle réduite, les simulations magnétodynamiques de la bobine créant le
champ stabilisateur permettent de déterminer le décalage entre l'injection du courant
dans la bobine (régime millisecondes) et l'injection du courant dans les fils
(régime
). Des simulations PIC
et électrostatiques permettent
d'éviter des erreurs trop grossières dans le dimensionnement des gaps en présence de
plasma et de
.
Le sens relatif des courants secondaires et primaires n'est à priori pas favorable sur le générateur Z . En effet, les deux courants circulants dans le même sens, les champs magnétique s'opposent, donc toute fraction du courant primaire diffusant dans le circuit secondaire atténue le champ magnétique présent dans le secondaire. Cet effet de la diffusion peut être gênant, notamment lors de l'utilisation d'un matériau trop diffusif pour le liner.
Mathias.Bavay_at_ingenieurs-supelec.org - juillet 2002