Les deux épaisseurs de peau précédement évoquées sont bien présentes, avec une
épaisseur de peau résistive de l'ordre de la centaine de microns (valeurs
habituelles pour ce régime) et une épaisseur de peau de la convection du champ
magnétique très voisine de celle observée dans la simulation du tir Z635
,
soit
. Cette dernière épaisseur de peau est en fait dépendante de
l'onde hydrodynamique qui la porte, donc seules les propriétées mécaniques du
matériau entre en compte. Ceci explique qu'elle ne change pas selon le régime
électromagnétique, et ceci à pour conséquence que plus le temps de monté du courant
devient court, c'est à dire plus l'épaisseur de peau de la diffusion résistive du
champ magnétique diminue, plus elle devient voisine de l'épaisseur de peau de la
convection du champ ...
Si l'on compare alors les vitesses de surface libre simulées avec les vitesses mesurées par Visars , les simulations de la série 2 (par exemple k24_2_2) comportent un courant tel que le front de monté de la vitesse de surface libre est très proche de celui mesuré expérimentalement (voir courbe F.11). Par contre, du fait de courants utilisés dans les simulations trop importants, les vitesses maximales atteintes sont trop fortes.
Au niveau de la diffusion des champs magnétiques, on remarque tout d'abord que les Bdots ne sont pas utilisables jusqu'à un niveau trop élevé, ceci venant sans doute d'une destruction de ces dernières. Par contre, le signal apparait systématiquement en avance dans la simulation, et cet effet s'amplifie avec la profondeur à laquelle est placé le capteur. Ceci indique que la simulation laisse trop diffuser le champ magnétique par rapport à l'expérience.
Mathias.Bavay_at_ingenieurs-supelec.org - juillet 2002